Register update: there will be a delay adding new records during our holiday period (July-Aug)
Cochrane COVID-19 Study Register
Study record
Tieskens 2021First Published: 2021 Jul 21Updated Date: 2021 Jul 21

Time-varying associations between COVID-19 case incidence and community-level sociodemographic, occupational, environmental, and mobility risk factors in Massachusetts

  1. Study Type
  2. Observational
  1. Study Aim
  2. Epidemiology
  1. Study Design
  2. Time Series
  1. Intervention Assignment
  2. Not Applicable
Reference record

Time-varying associations between COVID-19 case incidence and community-level sociodemographic, occupational, environmental, and mobility risk factors in Massachusetts

Tieskens KF, Patil P, Levy JI, Brochu P, Lane KJ, Fabian MP, Carnes F, Haley BM, Spangler KR, Leibler JH
Journal article
Report Results
BACKGROUND: Associations between community-level risk factors and COVID-19 incidence have been used to identify vulnerable subpopulations and target interventions, but the variability of these associations over time remains largely unknown. We evaluated variability in the associations between community-level predictors and COVID-19 case incidence in 351 cities and towns in Massachusetts from March to October 2020. METHODS: Using publicly available sociodemographic, occupational, environmental, and mobility datasets, we developed mixed-effect, adjusted Poisson regression models to depict associations between these variables and town-level COVID-19 case incidence data across five distinct time periods from March to October 2020. We examined town-level demographic variables, including population proportions by race, ethnicity, and age, as well as factors related to occupation, housing density, economic vulnerability, air pollution (PM2.5), and institutional facilities. We calculated incidence rate ratios (IRR) associated with these predictors and compared these values across the multiple time periods to assess variability in the observed associations over time. RESULTS: Associations between key predictor variables and town-level incidence varied across the five time periods. We observed reductions over time in the association with percentage of Black residents (IRR = 1.12 [95%CI: 1.12-1.13]) in early spring, IRR = 1.01 [95%CI: 1.00-1.01] in early fall) and COVID-19 incidence. The association with number of long-term care facility beds per capita also decreased over time (IRR = 1.28 [95%CI: 1.26-1.31] in spring, IRR = 1.07 [95%CI: 1.05-1.09] in fall). Controlling for other factors, towns with higher percentages of essential workers experienced elevated incidences of COVID-19 throughout the pandemic (e.g., IRR = 1.30 [95%CI: 1.27-1.33] in spring, IRR = 1.20 [95%CI: 1.17-1.22] in fall). Towns with higher proportions of Latinx residents also had sustained elevated incidence over time (IRR = 1.19 [95%CI: 1.18-1.21] in spring, IRR = 1.14 [95%CI: 1.13-1.15] in fall). CONCLUSIONS: Town-level COVID-19 risk factors varied with time in this study. In Massachusetts, racial (but not ethnic) disparities in COVID-19 incidence may have decreased across the first 8 months of the pandemic, perhaps indicating greater success in risk mitigation in selected communities. Our approach can be used to evaluate effectiveness of public health interventions and target specific mitigation efforts on the community level
Reference record

Time-varying associations between COVID-19 case incidence and community-level sociodemographic, occupational, environmental, and mobility risk factors in Massachusetts

Tieskens K, Patil P, Levy JI, Brochu P, Lane KJ, Fabian MP, Carnes F, Haley BM, Spangler KR, Leibler JH
Unpublished article (preprint)
Report Results
BACKGROUND: Associations between community-level risk factors and COVID-19 incidence are used to identify vulnerable subpopulations and target interventions, but the variability of these associations over time remains largely unknown. We evaluated variability in the associations between community-level predictors and COVID-19 case incidence in 351 cities and towns in Massachusetts from March to October 2020. METHODS: Using publicly available sociodemographic, occupational, environmental, and mobility datasets, we developed mixed-effect, adjusted Poisson regression models to depict associations between these variables and town-level COVID-19 case incidence data across five distinct time periods. We examined town-level demographic variables, including z-scores of percent Black, Latinx, over 80 years and undergraduate students, as well as factors related to occupation, housing density, economic vulnerability, air pollution (PM (2.5) ), and institutional facilities. RESULTS: Associations between key predictor variables and town-level incidence varied across the five time periods. We observed reductions over time in the association with percentage Black residents (IRR=1.12 CI=(1.12-1.13) in spring, IRR=1.01 CI=(1.00-1.01) in fall). The association with number of long-term care facility beds per capita also decreased over time (IRR=1.28 CI=(1.26-1.31) in spring, IRR=1.07 CI=(1.05-1.09)in fall). Controlling for other factors, towns with higher percentages of essential workers experienced elevated incidence of COVID-19 throughout the pandemic (e.g., IRR=1.30 CI=(1.27-1.33) in spring, IRR=1.20, CI=(1.17-1.22) in fall). Towns with higher percentages of Latinx residents also had sustained elevated incidence over time (e.g., IRR=1.19 CI=(1.18-1.21) in spring, IRR=1.14 CI=(1.13-1.15) in fall). CONCLUSIONS: Town-level COVID-19 risk factors vary with time. In Massachusetts, racial (but not ethnic) disparities in COVID-19 incidence have decreased over time, perhaps indicating greater success in risk mitigation in selected communities. Our approach can be used to evaluate effectiveness of public health interventions and target specific mitigation efforts on the community level. [Preprints are preliminary reports of work that have not been peer reviewed. Refer to the original preprint or preprint server for specific information about the individual preprint.]